Author information:
Márk Szenes: Magyar Nemzeti Bank, Supervisory Advisor. E-mail: szenesm@mnb.hu
Zsófia Dabi: Magyar Nemzeti Bank, Financial Modeller. E-mail: dabizs@mnb.hu
Abstract:
In recent years, supervisory bodies around the world have lost some of their confidence in the estimations of credit risk parameters at banks applying the internal ratings-based methodology. Supervisory experience shows that differences in risk metrics and ultimately in regulatory capital requirement levels stem primarily from inconsistencies in the modelling techniques applied and the various methodological approaches, rather than from any actual differences between the inherent risks of bank portfolios. To avoid this unwanted effect, in its supervisory review of banks’ internal capital adequacy assessment process, the Central Bank of Hungary (Magyar Nemzeti Bank, MNB) aims at specifying the necessary capital requirements by developing and applying harmonised benchmark models. This study shows how it is possible to estimate a probability of default (PD) for corporate portfolios, which is based on large banks’ corporate default rate data series and available corporate financial data, uses a harmonised methodology that factors in differences between the credit quality ratings of various customers, and is suitable for the supervisor’s calculation of the capital requirement for any given bank. Nonetheless, there may also be other factors in addition to individual financial data (e.g. qualitative expert elements, sector information) that may affect credit quality; identifying these may be one of the objectives of benchmark model development.
Cite as (APA):
Szenes, M., & Dabi, Z. (2020). Modelling Corporate Probability of Default – A Possible Supervisory Benchmark Model. Financial and Economic Review, 19(3), 52–77. https://doi.org/10.33893/FER.19.3.5277
Column:
Study
Journal of Economic Literature (JEL) codes:
C51, G21, G32
Keywords:
credit risk, probability of default, rating systems, supervisory benchmark model, PD
References:
Banai, Á. – Körmendi, Gy. – Lang, P. – Vágó, N. (2016): Modelling the credit risk of the Hungarian SME sector. MNB Occasional Papers 123, Magyar Nemzeti Bank.
Bauer, P. – Endrész, M. (2016): Modelling bankruptcy using Hungarian firm-level data. MNB Occasional Papers 122, Magyar Nemzeti Bank.
BCBS (2006): Basel Committee on Banking Supervision: International Convergence of Capital Measurement and Capital Standards. http://www.bis.org/publ/bcbs128.pdf. Downloaded: 2 May 2020.
BCBS (2010): Basel III: A global regulatory framework for more resilient banks and banking systems. Basel Committee on Banking Supervision. https://www.bis.org/publ/bcbs189_dec2010.pdf. Downloaded: 2 May 2020.
BCBS (2013): The regulatory framework: balancing risk sensitivity, simplicity and comparability. Discussion paper, Basel Committee on Banking Supervision. https://www.bis.org/publ/bcbs258.pdf. Download date: 2 May 2020.
BCBS (2017): High-level summary of Basel III reforms. Basel Committee on Banking Supervision. https://www.bis.org/bcbs/publ/d424_hlsummary.pdf. Downloaded: 2 May 2020.
EBA (2013): Report on the comparability of supervisory rules and practices. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/15947/aab59482-8c84-44b7-8d5f-8a588eb7276e/20131217 Report on the comparability of supervisory rules and practices.pdf?retry=1. Downloaded: 2 May 2020.
EBA (2015): EBA Report Results from the 2014 Low Default Portfolio (LDP) Exercise. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/950548/b3adc4f7-653d-408d-b950-da2e4229e294/EBA results from the 2014 Low Default portfolio (LDP) exercise.pdf?retry=1. Downloaded: 6 March 2020.
EBA (2016): Final Draft Regulatory Technical Standards: on the specification of the assessment methodology for competent authorities regarding compliance of an institution with the requirements to use the IRB Approach in accordance with Articles 144(2), 173(3) and 180(3) (b) of Regulation (EU) No 575/2013. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/1525916/e8373cbc-cc4b-4dd9-83b5-93c9657a39f0/Final Draft RTS on Assessment Methodology for IRB.pdf. Downloaded: 6 March 2020.
EBA (2017a): Guidelines on PD estimation, LGD estimation and the treatment of defaulted exposures. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/2033363/6b062012-45d6-4655-af04-801d26493ed0/Guidelines on PD and LGD estimation (EBA-GL-2017-16).pdf. Downloaded: 6 March 2020.
EBA (2017b): EBA Report Results from the 2016 High Default Portfolios (HDP) Exercise. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/15947/7d246d06-4fca-4662-8a8e-71106008c4c8/EBA Report results from the 2016 high default portfolio exercise - March 2017.pdf?retry=1. Downloaded: 6 March 2020.
EBA (2017c): EBA Report Results from the 2017 Low Default Portfolios (LDP) Exercise. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/15947/8dd027a7-08d9-490a-87d3-b5cd0ea9c9bf/EBA Report results from the 2017 LDP Credit Risk benchmarking.pdf?retry=1. Downloaded: 6 March 2020.
EBA (2019): EBA Report Results from the 2018 Low and High Default Portfolios Exercise. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/documents/10180/2087449/431db2b7-559a-4a64-b3e8-0451edaebfef/EBA Report results from the 2018 Credit Risk Benchmarking Report.pdf?retry=1. Downloaded: 6 March 2020.
EBA (2020): EBA Report Results from the 2019 Low-Default and High-Default Portfolios Exercise. European Banking Authority. https://eba.europa.eu/sites/default/documents/files/document_library/Publications/Reports/2020/EBA Report - Results from the 2019 Credit Risk Benchmarking Exercise.pdf. Downloaded: 6 March 2020.
ECB (2017): Guide for Targeted Review of Internal Models. European Central Bank. https://http://www.bankingsupervision.europa.eu/ecb/pub/pdf/trim_guide.en.pdf Downloaded: 2 May 2020.
ECB (2019): ECB guide to internal models. European Central Bank. https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.guidetointernalmodels_consolidated_201910~97fd49fb08.en.pdf. Downloaded: 2 May 2020.
Imre, B. (2008): Bázel II definíciókon alapuló nemfizetés-előrejelzési modellek magyarországi vállalati mintán (2002–2006) (Default-prediction models based on Basel II definitions, for a sample of Hungarian companies (2002–2006)). PhD thesis, Miskolc University.
Inzelt, Gy. – Szappanos, G. – Armai, Zs. (2016): Supervision by robust risk monitoring – a cycle-independent Hungarian corporate credit rating system. Financial and Economic Review, 15(3): 51–78. https://en-hitelintezetiszemle.mnb.hu/letoltes/gyorgy-inzelt-gabor-szappanos-zsolt-armai.pdf
Kristóf, T. – Virág, M. (2019): A csődelőrejelzés fejlődéstörténete Magyarországon (Historical development of Hungarian bankruptcy prediction). Vezetéstudomány (Budapest Management Review), 50(12): 62–73. https://doi.org/10.14267/VEZTUD.2019.12.06
Madar, L. (2014): Scoring rendszerek hatásai a gazdasági tőkeszámítás során alkalmazott portfóliómodellek eredményeire (The effects of scoring systems on the results of portfolio models used in economic capital calculations). PhD thesis. University of Kaposvár.
MNB (2020): A tőkemegfelelés belső értékelési folyamata (ICAAP), a likviditás megfelelőségének belső értékelési folyamata (ILAAP) és felügyeleti felülvizsgálatuk, valamint az üzleti modell elemzés (BMA) (The Internal Capital Adequacy Assessment Process (ICAAP), the Internal Liquidity Adequacy Assessment Process (ILAAP) and their Supervisory Review, and the Business Model Analysis (BMA)). Magyar Nemzeti Bank. https://www.mnb.hu/letoltes/icaap-ilaap-bma-kezikonyv-2019-final.docx. Downloaded: 6 March 2020.