Author information:
Alexandra Prisznyák: University of Pécs, PhD Candidate. E-mail: alexandra.prisznyak@gmail.com
Abstract:
Artificial intelligence, machine learning, intelligent robots and related innovative technologies are emerging as driving forces that are reprogramming the traditional remnants of the banking sector. The purpose of this groundbreaking study is to localise the concept of bankrobotics, clarify the conceptualisation of bankrobotics technologies and analyse their applications in banking. Their value creation is interpreted along vertical and horizontal dimensions. On the basis of in-depth interviews, the approach and implementation of their organisational adoption are discussed, along with the factors inhibiting value creation. The author proposes the classification of partner chain-based AI systems, the introduction of incident databases and the establishment of disclosure obligations regarding investments in bankrobotics, to avoid the spread of the AI-washing phenomenon in the banking sector.
Cite as (APA):
Prisznyák, A. (2023). Horizontal and Vertical Value Creation in Bankrobotics and the AI-Washing Phenomenon. Financial and Economic Review, 22(3), 97–122. https://doi.org/10.33893/FER.22.3.97
Column:
Study
Journal of Economic Literature (JEL) codes:
G21,O33
Keywords:
artificial intelligence, bankrobotics, value creation, banking AI incident database, AI-washing
References:
Aggarwal, S. – Kumar, V. – Sudarsan, S.D. (2014): Identification and Detection of Phishing Emails Using Natural Language Processing Techniques. SIN ‘14: Proceedings of the 7th International Conference on Security of Information and Networks, September, pp. 217–222. https://doi.org/10.1145/2659651.2659691
Aghion, P. – Jones, B.F. – Jones, C.I. (2017): Artificial intelligence and economic growth. NBER Working Paper No. 23928, October. https://doi.org/10.3386/w23928
Alt, R. – Beck, R. – Smits, M.T. (2018): FinTech and the transformation of the financial industry. Electronic Markets, 28, 235–243. https://doi.org/10.1007/s12525-018-0310-9
Alt, R. – Puschmann, T. (2016): Digitalisierung der Finanzindustrie – Grundlagen der FinTech-Evolution. Springer Gabler Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50542-7
Aparaj, S. – Chourey, S. – Bhagat, R. – Katkar, G. (2013): Smart Bot. A Virtual Help Desk Chat Bot. https://www.coursehero.com/file/123685786/Smart-Bot-A-Virtual-Help-Desk-Chat-Botpdf/
Bagó, P. (2023): A mesterséges intelligencia lehetőségei a pénzügyekben (The potential of artificial intelligence in finance). Gazdaság és Pénzügy/Economy and Finance, 10(1): 21–38. https://doi.org/10.33926/gp.2023.1.2
Bartram, S.M. – Branke, J. – Motahari, M. (2020): Artificial intelligence in asset management. CFA Institute Research Foundation Literature Reviews. https://doi.org/10.2139/ssrn.3692805
Beketov, M. – Lehmann, K. – Wittke, M. (2018): Robo Advisors: quantitative methods inside the robots. Journal of Asset Management, 19: 363–370. https://doi.org/10.1057/s41260-018-0092-9
BIS (2018): Sound Practices: Implications of FinTech developments for banks and bank supervisors. Bank for International Settlements, February 19. https://www.bis.org/bcbs/publ/d431.htm
Campbell, A.G. – Staikopoulos, A. – Holz, T. – Harlick, M. – Cosgrove J. (2021): Bank of Ireland Tests Meetings in Virtual Reality. In: Jung, T. – Dalton, J. (eds.): XR Case Studies. Management for Professionals. Springer, Cham, pp. 123–128. https://doi.org/10.1007/978-3-030-72781-9_15
Chaubey, S. – Bhalerao, S. – Mangaonkar, N. (2022): AutoKYC: Automation of Identity establishment and authentication in KYC process using text extraction and face recognition. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, pp. 1–6. https://doi.org/10.1109/asiancon55314.2022.9909442
Cheng, Y. – Jiang H. (2020): How Do AI-driven Chatbots Impact User Experience? Examining Gratifications, Perceived Privacy Risk, Satisfaction, Loyalty, and Continued Use. Journal of Broadcasting & Electronic Media, 64(4): 592–614. https://doi.org/10.1080/08838151.2020.1834296
Discanno, F. (2023): A comparison between the labor market trends in the European and Italian banking sectors: the impact of digital transformation and the related need for investing in the human factor. Working Paper, Cambridge Open Engage. https://doi.org/10.33774/coe-2023-1cldg
Elcholiqi, A. – Musdholifah, A. (2020): Chatbot in Bahasa Indonesia Using NLP to Provide Banking Information. Indonesian Journal of Computing and Cybernetics Systems, 14(1): 91–102. https://doi.org/10.22146/ijccs.41289
El-Gohary, H. – Thayaseelan, A. – Babatunde, S. – El-Gohary, S. (2021): An Exploratory Study on the Effect of Artificial Intelligent-Enabled Technology on Customers Experiences in Banking Sector. Journal of Technological Advancements, 1(1): 1–17. https://doi.org/10.4018/jta.20210101.oa1
EBA (2020): EBA report on Big Data and Advanced Analytics. European Banking Authority, January. https://www.eba.europa.eu/sites/default/documents/files/document_library//Final Report on Big Data and Advanced Analytics.pdf?retry=1
EBF (2019): EBF position paper on AI in the banking industry. European Banking Federation, July 1. https://www.ebf.eu/wp-content/uploads/2020/03/EBF_037419-Artificial-Intelligence-in-the-banking-sector-EBF.pdf
EC (2018): The European Commission’s Independent High-Level Expert Group on Artificial Intelligence: A Definition of AI: Main Capabilities and Disciplines. European Commission, December 18. https://ec.europa.eu/futurium/en/system/files/ged/ai_hleg_definition_of_ai_18_december_1.pdf
EC (2019): Ethics guidelines for trustworthy AI. 2019. European Commission. https://doi.org/10.2759/346720
EC (2020): The Assessment List for Trustworthy Artificial Intelligence (ALTAI) for self-assessment. 2020, July. European Commission. https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
EC (2021): Laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. COM(2021) 206 final. European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
EP (2020): Artificial intelligence: How does it work, why does it matter, and what can we do about it? European Parliament, June. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641547/EPRS_STU(2020)641547_EN.pdf
EP (2021): A European strategy for data. At a glance. European Parliament, March 2. https://www.europarl.europa.eu/RegData/etudes/ATAG/2021/690527/EPRS_ATA(2021)690527_EN.pdf
EP (2022): Report on Artificial Intelligence in a Digital Age. 2020/2266(INI). European Parliament, April 5. https://www.europarl.europa.eu/doceo/document/A-9-2022-0088_EN.html
ESA (2022): Joint European Supervisory Authority response to the European Commission’s February 2021 Call for Advice on digital finance and related issues: regulation and supervision of more fragmented or non-integrated value chains, platforms and bundling of various financial services, and risks of groups combining different activities. European Supervisory Authorities, January 31. https://www.eba.europa.eu/sites/default/documents/files/document_library/Publications/Reports/2022/1026595/ESA 2022 01 ESA Final Report on Digital Finance.pdf
Eyal, I. (2017): Blockchain Technology: Transforming Libertarian Cryptocurrency Dreams to Finance and Banking Realities. Computer, 50(9): 38–49. https://doi.org/10.1109/mc.2017.3571042
Fáykiss, P. – Papp, D. – Sajtos, P. – Tőrös, Á. (2018): Regulatory Tools to Encourage FinTech Innovations: The Innovation Hub and Regulatory Sandbox in International Practice. Financial and Economic Review, 17(2): 43–67. https://doi.org/10.25201/FER.17.2.4367
FTC (2021): Aiming for truth, fairness, and equity in your company’s use of AI. Federal Trade Commission, April 19. https://www.ftc.gov/business-guidance/blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai
FTC (2023): Keep your AI claims in check. Federal Trade Commission, February 27. https://www.ftc.gov/business-guidance/blog/2023/02/keep-your-ai-claims-check
Hajek, P.– Olej, V. – Myskova, R. (2014): Forecasting corporate financial performance using sentiment in annual reports for stakeholders’ decision-making. Technological and Economic Development of Economy, 20(4): 721–738. https://doi.org/10.3846/20294913.2014.979456
Harkácsi, G.J. – Szegfű, L.P. (2021): The Role of the Compliance Function in the Financial Sector in the Age of Digitalisation, Artificial Intelligence and Robotisation. Financial and Economic Review, 20(1): 152–170. https://doi.org/10.33893/FER.20.1.152170
HGMA-PWC (2019): Reshaping Banking with Artificial Intelligence. Hong Kong Monetary Authority – PWC, December. https://www.hkma.gov.hk/media/eng/doc/key-functions/finanical-infrastructure/Whitepaper_on_AI.pdf
Horváth, D. (2022): FinTech és blokklánc alapú megoldások alkalmazási lehetőségei a zöld pénzügyekben (Potential applications of FinTech and blockchain-based solutions in green finance). Vezetéstudomány/Budapest Management Review, 53(4): 41–54. https://doi.org/10.14267/veztud.2022.04.04
Johari, R.J. – Zul, N.B. – Talib, N. – Hussin, S.A.H.S (2020): Money Laundering: Customer Due Diligence in the Era of Cryptocurrencies. In: Proceedings of the 1st International Conference on Accounting, Management and Entrepreneurship (ICAMER 2019), Advances in Economics, Business and Management Research (AEBMR), Atlantis Press, pp. 130–135. https://doi.org/10.2991/aebmr.k.200305.033
Jullum, M. – Løland, A. – Huseby, R.B. – Ånonsen, G. – Lorentzen, J. (2020): Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1): 173–186. https://doi.org/10.1108/JMLC-07-2019-0055
Kaya, O. (2019): Artificial intelligence in banking. A lever for profitability with limited implementation to date. EU Monitor, Deutsche Bank Research, June 4. https://www.dbresearch.com/PROD/RPS_EN-PROD/PROD0000000000495172/Artificial_intelligence_in_banking%3A_A_lever_for_pr.PDF?undefined&%3Bamp%3Brealload=yarTeejGH6x59VMbYpV3He3szy0JshtyC~33AsO3rGI5gVHhIQEmpXxVOl2tg~kD
Khurana, D. – Koli, A. – Khatter, K. – Singh, S. (2023): Natural language processing: state of the art, current trends and challenges. Multimedia Tools Applications, 82: 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
Klein, T. (2021): Robotjog vagy emberjog? (Robot law or human law?). In: Török, B. – Ződi, Zs. (eds.): A mesterséges intelligencia szabályozási kihívásai – Tanulmányok a mesterséges intelligencia és a jog határterületeiről (Regulatory challenges of artificial intelligence – Studies on the boundary between artificial intelligence and law). Ludovika Egyetemi Kiadó, Budapest, pp. 111–142.
Kou, G. – Akdeniz, Ö.O. – Dinçer, H. – Yüksel, S. (2021): FinTech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach. Financial Innovation, 7(1), 39. https://doi.org/10.1186/s40854-021-00256-y
Leung, H. – Chung, W.Y. (2020): A Dynamic Classification Approach to Churn Prediction in Banking Industry. Conference Paper. Proceedings of Americas Conference on Information Systems (AMCIS), Virtual Conference, 10–14 August, Paper no. 28. https://hub.hku.hk/handle/10722/289854
Lunn, B. (2016): Banks Partnering with FinTech Start-ups to Create an Integrated Customer Experience. In: Chishti, S. – Janos Barberis, J. (eds.): The FinTech Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries. John Wiley & Sons Ltd, West Sussex, United Kingdom, Chapter 63. https://doi.org/10.1002/9781119218906.ch63
Marchinares, A. – Alonso, I.A. (2020): Project Portfolio Management Studies Based on Machine Learning and Critical Success Factors. In: 2020 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, pp. 369–374. https://doi.org/10.1109/pic50277.2020.9350787
McKinsey (2020): AI-bank of the future: Can banks meet the AI challenge? McKinsey & Company, September. https://www.mckinsey.com/industries/financial-services/our-insights/ai-bank-of-the-future-can-banks-meet-the-ai-challenge
Nica, I. – Alexandru, D.B. – Crăciunescu, S.L.P. – Ionescu, S. (2021): Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques. Sustainability, 13(9): 1–27. https://doi.org/10.3390/su13095162
Patel, N. – Trivedi, S. (2020): Leveraging Predictive Modeling, Machine Learning Personalization, NLP Customer Support, and AI Chatbots to Increase Customer Loyalty. Empirical Quests for Management Essences (EQME), 3(3): 1–24. https://researchberg.com/index.php/eqme/article/view/46
Payne, E.H.M. – Peltier, J. – Barger, V.A. (2021): Enhancing the value co-creation process: artificial intelligence and mobile banking service platforms. Journal of Research in Interactive Marketing, 15(1): 68–85. https://doi.org/10.1108/jrim-10-2020-0214
Pintér, É. – Herczeg, B. (2023): A technológia szerepe a pénzügyiszolgáltatás-innovációban a big tech-vállalatok térnyerése tükrében (The role of technology in financial services innovation in the light of the spread of large technology companies). Gazdaság és Pénzügy/ Economy and Finance, 10(1): 39–56. https://doi.org/10.33926/gp.2023.1.3
Prisznyák, A. (2022a): “Tradicionális” bankok front/middle/back office területeinek mesterséges intelligencia (AI), gépi tanulás (ML) implementációja (Implementation of artificial intelligence (AI), machine learning (ML) in front/middle/back office areas of “traditional” banks). In: FinTech – DEFI - Kriptoeszközök gazdasági és jogi lehetőségeiés kockázatai. Konferenciakötet – válogatott tanulmányok (FinTech – DEFI – Economic and legal opportunities and risks of cryptoassets. Conference proceedings – selected papers),Pécs,pp.98–113.https://pea.lib.pte.hu/bitstream/handle/pea/34319/PTE-%C3%81JK-20211119.pdf?sequence=1&isAllowed=y
Prisznyák, A. (2022b): Bankrobotika: mesterséges intelligencia és gépi tanulás alapú banki kockázatkezelés: Pénzmosás és terrorizmusfinanszírozás megakadályozása (Bankrobotics: Artificial Intelligence and Machine Learning Powered Banking Risk Management: Prevention of Money Laundering and Terrorist Financing). Pénzügyi Szemle/Public Finance Quarterly, 67(2): 293–308. https://doi.org/10.35551/psz_2022_2_8
Prisznyák, A. (2023): Etikus AI: Javaslat az EU megbízható AI szabályozás hiányosságainak áthidalására és a gyakorlati implementáció támogatására (Ethical AI: Proposal to bridge the gap in EU regulation on trustworthy AI and to support practical implementation of ethical perspectives). Gazdaság és Pénzügy/Economy and Finance, 10(2): 169–195. https://doi.org/10.33926/gp.2023.2.4
Rouf, N. – Malik, M.B. – Arif, T. – Sharma, S. – Singh, S. – Aich, S. – Kim, H.-C. (2021): Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics, 10, 2717. https://doi.org/10.3390/electronics10212717
Schena, C. – Tanda, A. – Arlotta, C. – Potenza, G. – D’Agostino, G. – Munafò, P. (2018): The Development of FinTech. Opportunities and Risks for the Financial Industry in the Digital Age – With Preface to the Series Dedicated to FinTech. CONSOB FinTech papers no. 1. https://doi.org/10.2139/ssrn.3409780
Seele, P. – Schultz, M.D. (2022): From Greenwashing to Machinewashing: A Model and Future Directions Derived from Reasoning by Analogy. Journal Business Ethics, 178, 1063–1089. https://doi.org/10.1007/s10551-022-05054-9
Shaikh, A.A. – Hanafzadeh, P. – Karjaluoto, H. (2017): Mobile Banking and Payment System: A Conceptual Standpoint. International Journal E-Business Research, 13(2): 14–27. https://doi.org/10.4018/ijebr.2017040102
State, C. – Chakrabarti, P. – Hughes, D. – Ripy, S. (2023): Everyone’s Talking AI, Including the Federal Trade Commission: Key Takeaways from the FTC’s 2023 AI Guidance. The Journal of Robotics, Artificial Intelligence & Law, 6(4): 265–269. https://www.crowell.com/a/web/jJgxMLt3bJdVTPbGi137sU/everyones-talking-ai-including-the-ftc-key-takeaways-from-the-ftcs-2023-ai-guidance.pdf
Stefán, I. (2020): A mesterséges intelligencia fogalmának polgári jogi értelmezése (Civil law interpretation of the concept of artificial intelligence). Pro Futuro, 10(1): 28–41. https://doi.org/10.26521/profuturo/2020/1/7551
Strader, T.J. – Rozycki, J. – Root, T.H. – Huang, Y-H.J. (2020): Machine Learning Stock Market Prediction Studies: Review and Research Directions. Journal of International Technology and Information Management, 28(4): 63–83. https://doi.org/10.58729/1941-6679.1435
Szalavetz, A. (2022): Digitalisation-induced performance improvement: Don’t take it for granted! Acta Oeconomica, 72(4): 457–475. https://doi.org/10.1556/032.2022.00031
Szikora, A. – Nagy, B. (2020): Mesterséges intelligencia a pénzügyi szektorban (Artificial intelligence in the financial sector). Special article (szakmai cikk), Magyar Nemzeti Bank, 7 May. https://www.mnb.hu/kiadvanyok/szakmai-cikkek/felugyelet/dr-szikora-andrea-nagy-benjamin-mesterseges-intelligencia-a-penzugyi-szektorban
Tanda, A. – Schena, C. (2019): Introducing the FinTech Revolution. In: FinTech, BigTech and Banks, Palgrave Macmillan Studies in Banking and Financial Institutions. Palgrave Pivot, Cham, pp.1–5. https://doi.org/10.1007/978-3-030-22426-4_1
Tomašev, N. – Cornebise, J. – Hutter, F. – Mohamed, S. – Picciariello, A. – Connelly, B. – Belgrave, D.C.M. – Ezer, D. – van der Haert, F.C. – Mugisha, F. – Abila, G. – Arai, H. – Almiraat, H. – Proskurnia, J. – Snyder, K. – Otake-Matsuura, M. – Othman, M. – Glasmachers, T. – de Wever, W. – Teh, Y.W. – Khan, M.E. – De Winne, R. – Schaul, T. – Clopath, C. (2020): AI for social good: unlocking the opportunity for positive impact. Nature Communications, 11, 2468. https://doi.org/10.1038/s41467-020-15871-z
Török, B. – Ződi, Zs. (eds.) (2021): A mesterséges intelligencia szabályozási kihívásai – Tanulmányok a mesterséges intelligencia és a jog határterületeiről (Regulatory challenges of artificial intelligence – Studies on the boundary between artificial intelligence and law). Ludovika Egyetemi Kiadó, Budapest.
Vasantham, T.S. (2021): The Role of Artificial Intelligence in Human Research Management. Engineering and Scientific International Journal (ESIJ), 8(2): 499–509. https://doi.org/10.30726/esij/v8.i2.2021.82013
Wirtz, J. – Patterson, P.G. – Kunz, W.H. – Gruber, T. – Lu, V.N. – Paluch, S. – Martins, A. (2018): Brave new world: service robots in the frontline. Journal of Service Management, 29(5): 907–931. https://doi.org/10.1108/josm-04-2018-0119
Zhang, M. (2018): China Construction Bank opens a branch managed by robots. South China Morning, 11 April. https://www.scmp.com/business/companies/article/2141203/meet-new-face-branch-banking