Estimating the Energy Demand of the Residential Real Estate Stock in Hungary Based on Energy Performance Certificate Data

27 September 2023DOI: https://doi.org/10.33893/FER.22.3.123

Author information:

Mónika Bene: Hungarian Central Statistical Office, Statistician. E-mail:

Antal Ertl: Hungarian Central Statistical Office, Statistician; Corvinus University of Budapest, Phd Student. E-mail:

Áron Horváth: ELTINGA Centre for Real Estate Research, Founder; Hungarian Energy Efficiency Institute, Managing Director. E-mail:

Gergely Mónus: Hungarian Central Statistical Office, Statistician; Corvinus University of Budapest, Phd Student. E-mail:

Judit Székely: Hungarian Central Statistical Office, Head of Section. E-mail:

Abstract:

In our study, estimates are made for the distribution of the Hungarian residential real estate stock in 2020 by energy characteristics. In our calculations, which are novel in Hungary, a new database has been compiled by combining the energy certificates issued since 2016, the 2016 Microcensus and the housing construction statistics of the HCSO. Energy performance certificate data are assigned to the dwellings included in the Microcensus and to the 68,000 new dwellings built in the period since then. A statistical relationship is established between the characteristics and the energy demand of dwellings, which is then extrapolated to the stock as a whole. This is processed to present the estimated calculated energy consumption per square metre of the Hungarian residential real estate stock and the characteristics of the estimate by area and real estate type. Our results can support sustainable mortgage lending in the financial system.

Cite as (APA):

Bene, M., Ertl, A., Horváth, Á., Mónus, G., & Székely, J. (2023). Estimating the Energy Demand of the Residential Real Estate Stock in Hungary Based on Energy Performance Certificate Data. Financial and Economic Review, 22(3), 123–151. https://doi.org/10.33893/FER.22.3.123

PDF download
The works on this site are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Column:

Study

Journal of Economic Literature (JEL) codes:

G21, O13, Q40, R30

Keywords:

flat, energy, EPC, EU Taxonomy

References:

Al-Shargabi, A.A. – Almhafdy, A. – Ibrahim, D.M. – Alghieth, M. – Chiclana, F. (2022): Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. Journal of Building Engineering, 54: 104577. https://doi.org/10.1016/j.jobe.2022.104577

Antonín, J. (2019): Methodology of establishing the 15% threshold of the most energy-efficient buildings in the Czech Republic. Czech Green Building Council (CZGBC), 2019/06. https://www.czgbc.org/files/2019/12/8dcda4fba36a9a298865ac8b56d6998a.pdf

Bokor, L. (2022): Regulatory and Market Trends for ESG Bonds and Funds, and Some of the Associated Risks of Sovereigns. Financial and Economic Review, 21(4): 150–179. https://doi.org/10.33893/FER.21.4.150

CFP (2022): Green Residential Buildings Methodology Assessment Document. CFP Green Buildings, June. https://www.nn-group.com/article-display-on-page-no-index/nn-bank-green-residential-buildings-methodology-assessment-document-cfp.htm

Csoknyai, T. – Hrabovszky-Horváth, S. – Georgiev, Z. – Jovanovic-Popovic, M. – Stankovic, B. – Villatoro, O. – Szendrő, G. (2016): Building stock characteristics and energy performance of residential buildings in Eastern-European countries. Energy and Buildings 132: 39–52. https://doi.org/10.1016/j.enbuild.2016.06.062

Csoknyai, T. (2022): A magyarországi lakóépület-állomány energetikai modellezése épülettipológián alapuló modellezéssel (Energy modelling of the Hungarian residential building stock with building typology based modelling). Magyar Épületgépészet, 71(6): 1–9.

Ertl, A. – Horváth, Á. – Mónus, G. – Sáfián, F. – Székely, J. (2021): Az energetikai jellemzők és az ingatlanárak kapcsolata (Relationship between Energy Efficiency Attributes and House Price). Statisztikai Szemle (Hungarian Statistical Review), 99 (10): 923–953. https://doi.org/10.20311/stat2021.10.hu0923

Eurostat (2017): Technical manual on Owner-Occupied Housing and House Price Indices. Eurostat. https://ec.europa.eu/eurostat/documents/7590317/0/Technical-Manual-OOH-HPI-2017/

Florio, P. – Teissier, O. (2015): Estimation of the Energy Performance Certificate of a housing stock characterised via qualitative variables through a typology-based approach model: A fuel poverty evaluation tool. Energy and Buildings, 89: 39–48. https://doi.org/10.1016/j.enbuild.2014.12.024

Hajnal, G. – Palicz, A.M. – Winkler, S. (2022): Impact of Energy Rating on House Prices and Lending Rates. Financial and Economic Review, 21(4): 29–56. https://doi.org/10.33893/FER.21.4.29

HCSO (2016): Miben élünk? A 2015. évi lakásfelmérés főbb eredményei (What are we living in? Key findings from the 2015 Dwelling Survey). Hungarian Central Statistical Office. https://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=171574&p_temakor_kod=KSH&p_lang=HU

HCSO (2017): Microcensus 2016 – 2. Characteristics of the population and dwellings. Hungarian Central Statistical Office. https://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=1032400&p_temakor_kod=KSH&p_lang=en

HCSO (2018): Mikrocenzus 2016 – 7. Lakáskörülmények (Mikrocenzus 2016 – 7. Housing conditions). Hungarian Central Statistical Office. https://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=1033078&p_temakor_kod=KSH&p_lang=HU

HCSO (2023): Housing prices, housing price index, Q4 2022. Hungarian Central Statistical Office. https://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=1079443&p_temakor_kod=KSH&p_lang=EN

Hettinga, S. – van ’t Veer, R. – Boter, J. (2023): Large scale energy labelling with models: The EU TABULA model versus machine learning with open data. Energy, 264: 126175. https://doi.org/10.1016/j.energy.2022.126175

ICSO (2019): Domestic Building Energy Ratings. Quarter 2 2019. Irish Central Statistical Office. https://www.cso.ie/en/releasesandpublications/er/dber/domesticbuildingenergyratingsquarter22019/

ITM (2020): Hosszú Távú Felújítási Stratégia az (EU) 2018/844 számú irányelve alapján a 2021–2027 közötti kohéziós célú támogatások kifizetését lehetővé tevő feljogosító feltételek teljesítése céljából (Long renewal strategy to fulfil the eligibility conditions of cohesion funds for the period 2021–2027 according to Directive (EU) 2018/844). Innovációs és Technológiai Minisztérium/Ministry for Innovation and Technology, Hungary. https://energy.ec.europa.eu/system/files/2021-07/hu_2020_ltrs_0.pdf

Jyske Realkredit (2022): Top 15% energy-efficient buildings under the EU taxonomy. February. https://jyskerealkredit.com/wps/wcm/connect/brf_com/dc9262ca-6015-40db-ba4d-b29b5d49f5c4/Energieffektive%2Bbygninger%2BTop-15%%2BUK.pdf?MOD=AJPERES

Kain, J. – Quigley, J. (1970): Measuring the Value of Housing Quality. Journal of the American Statistical Association, 65(330): 532–548. https://doi.org/10.2307/2284565

Kovács, V.B. – Szilágyi, A. – Csoknyai, T. (2021): EU taxonómia az épületenergetikában (EU Taxonomy in building energy). MNB-BME együttműködés, Zöld Pénzügyek, Zöld Gazdaság Műhely. http://mnbprogram.bme.hu/wp-content/uploads/2021/10/2_2_1_Tanulmany_EU-taxonomia_az_epuletenergetikaban.pdf

Multiconsult (2021): Green Norwegian Buildings. https://www.sparebank1.no/content/dam/SB1/bank/helgeland/vedlegg/Investor/obligasjonslan/Report-Green-Buildings-SpareBank-1-Helgeland.pdf

Nidasio, R. – Panvini, A. – Piantoni, E. (2022): Percentage distribution of primary energy (Ep) values in the Italian national building stock. CTI Energia e Ambiente. https://energyefficientmortgages.eu/wp-content/uploads/2022/12/Percentage-distribution-of-primary-energy-Ep-values-in-the-Italian-national-building-stock-1.pdf

Ritter, R. (2021): Van eszköz a magyarországi ingatlanok energetikai állapotának javítására. Úton a minősített zöld jelzáloglevél felé (There are tools to improve the energy performance of Hungarian housing. Towards a qualified green mortgage bond). Szakmai cikk (special article), Magyar Nemzeti Bank. https://www.mnb.hu/letoltes/21-03-02-ritter-renato-a-magyarorszagi-ingatlanallomany-energetikai-allapota.pdf.

Ritter, R. (2022): Az energiafüggetlenség kulcsa a hazai ingatlanok energiahatékonyságának növelése (Making homes more energy efficient is key to Hungary’s energy independence). Szakmai cikk (special article), Magyar Nemzeti Bank. https://www.mnb.hu/letoltes/ritter-renato-az-energiafuggetlenseg-kulcsa-a-hazai-ingatlanok-energiahatekonysaganak-novelese.pdf.

Sági, J. (2020): Zöldkötvények kibocsátásának egyes kérdései, a környezeti célokkal összefüggésben (Certain Aspects of Green Bond Issuances in Relation to Environmental Goals). Polgári Szemle (Civic Review Journal of Economic and Social Sciences), 16(4–6): 270–278. https://doi.org/10.24307/psz.2020.1019

Sun, Y. – Haghighat, F. – Fung, B.C.M. (2020): A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy and Building, 221: 110022. https://doi.org/10.1016/j.enbuild.2020.110022