Market Timing Investment Methods on the Budapest Stock Exchange

26 June 2024DOI: https://doi.org/10.33893/FER.23.2.105

Author information:

Attila Zoltán Nagy https://orcid.org/0009-0007-3261-249X: University of Pécs, PhD Student. E-mail:

Abstract:

A large body of literature confirms that simple investment methods based on timing can outperform and thus be an alternative to traditional investment strategies. The study tests this hypothesis on the Budapest Stock Exchange stock index: a simple timing strategy using 4,619 moving averages was tested on 554,935 trades over the period from 1998 to 2022. The study finds that a wide range of the 4,619 variants performed well on in-sample data, but most could not achieve outperformance out of sample. In some cases, overfitting cannot be ruled out, nor can the effect of randomness due to the low number of cases. The robust variant selected on the in-sample data outperforms out of sample and over the full period at trading costs. However, at a one per cent significance level the Monte Carlo simulation of this variant does not allow the null hypothesis to be rejected, i.e. it cannot be ruled out that randomness or market noise caused the results.

Cite as (APA):

Nagy, A. Z. (2024). Market Timing Investment Methods on the Budapest Stock Exchange. Financial and Economic Review, 23(2), 105–130. https://doi.org/10.33893/FER.23.2.105

PDF download
The works on this site are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Column:

Study

Journal of Economic Literature (JEL) codes:

G17, C15, C41

Keywords:

timing, technical analysis, stock markets, BUX index

References:

Abudy, M. – Kaplanski, G. – Mugerman, Y. (2023): Market Timing with Moving Average Distance: International Evidence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4652949

Anarkulova, A. – Cederburg, S. – O’Doherty, M.S. (2022): Stocks for the long run? Evidence from a broad sample of developed markets. Journal of Financial Economics, 143(1): 409–433. https://doi.org/10.1016/j.jfineco.2021.06.040

Aronson, D.R. (2006): Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to Trading Signals. Wiley. https://doi.org/10.1002/9781118268315

Avramov, D. – Kaplanski, G. – Subrahmanyam, A. (2021): Moving average distance as a predictor of equity returns. Review of Financial Economics, 39(2): 127–145. https://doi.org/10.1002/rfe.1118

Bessembinder, H. – Chan, K. (1995): The profitability of technical trading rules in the Asian stock markets. Pacific-Basin Finance Journal, 3(2–3): 257–284. https://doi.org/10.1016/0927-538X(95)00002-3

Bessembinder, H. – Chan, K. (1998): Market Efficiency and the Returns to Technical Analysis. Financial Management, 27(2): 5–17. https://doi.org/10.2307/3666289

Bihary, Zs. – Csóka, P. – Kondor, G. (2018): A részvénytartás spektrális kockázata hosszú távon (On the spectral measure of risk in holding stocks in the long run). Közgazdasági Szemle (Economic Review), 65(7-8): 687–700. https://doi.org/10.18414/KSZ.2018.7-8.687

Birău, R. (2015): Emerging capital market efficiency: a comparative analysis of weak-form efficiency in Romania and Hungary in the context of the global financial crisis. AI & Society, 30(2): 223–233. https://doi.org/10.1007/s00146-013-0505-8

Brock, W. – Lakonishok, J. – LeBaron, B. (1992): Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. The Journal of Finance, 47(5): 1731–1764. https://doi.org/10.2307/2328994

Buczynski, W. – Cuzzolin, F. – Sahakian, B. (2021): A review of machine learning experiments in equity investment decision-making: why most published research findings do not live up to their promise in real life. International Journal of Data Science and Analytics, 11(3): 221–242. https://doi.org/10.1007/s41060-021-00245-5

Chabot, B. – Ghysels, E. – Jagannathan, R. (2009): Momentum Cycles and Limits to Arbitrage Evidence from Victorian England and Post-Depression US Stock Markets. NBER Working Paper 15591. https://doi.org/10.3386/w15591

Csiki, M. – Kiss, G.D. (2018): Capital Market Contagion in the Stock Markets of Visegrád Countries Based on the Heckman Selection Model. Financial and Economic Review, 17(4): 23–52. https://doi.org/10.25201/FER.17.4.2352

Csillag, J.B. – Granát, P.M. – Neszveda, G. (2022): Media Attention to Environmental Issues and ESG Investing. Financial and Economic Review, 21(4): 129–149. https://doi.org/10.33893/FER.21.4.129

Csillag, B. – Neszveda, G. (2020): A gazdasági várakozások hatása a tőzsdei momentumstratégiára (The impact of economic expectations on the momentum trading strategy). Közgazdasági Szemle (Economic Review), 67(11): 1093–1111. http://doi.org/10.18414/KSZ.2020.11.1093

De Bondt, W.F.M. – Thaler, R. (1985): Does the Stock Market Overreact? The Journal of Finance, 40(3): 793–805. https://doi.org/10.2307/2327804

Falck, A. – Rej, A. – Thesmar, D. (2021): When Systematic Strategies Decay. Quantitative Finance, 22(11): 1955–1969. https://doi.org/10.2139/ssrn.3845928

Fama, E.F. (1970): Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2): 383–417. https://doi.org/10.2307/2325486

Fang, J. – Jacobsen, B. – Qin, Y. (2012): Predictability of the Simple Technical Trading Rules: An Out-of-Sample Test. Review of Financial Economics, 23(1): 30–45. https://doi.org/10.1016/j.rfe.2013.05.004

Fernández, M.F. – Henry, Ó. – Pybis, S. – Stamatogiannis, M.P. (2023): Can we forecast better in periods of low uncertainty? The role of technical indicators. Journal of Empirical Finance, 71(March): 1–12. https://doi.org/10.1016/j.jempfin.2022.12.014

Gao, Z. – Jiang, W. – Xiong, W.A. – Xiong, W. (2023): Daily Momentum and New Investors in an Emerging Stock Market. NBER Working Paper. https://doi.org/10.3386/w31839

Harvey, C.R. – Liu, Y. – Zhu, H. (2016): … and the Cross-Section of Expected Returns. The Review of Financial Studies, 29(1): 5–68. https://doi.org/10.1093/rfs/hhv059

Hou, K. – Xue, C. – Zhang, L. (2018): Replicating Anomalies. The Review of Financial Studies, 33(5): 2019–2133. https://doi.org/10.1093/rfs/hhy131

Hudson, R., – Dempsey, M. – Keasey, K. (1996): A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices – 1935 to 1994. Journal of Banking & Finance, 20(6): 1121–1132. https://doi.org/10.1016/0378-4266(95)00043-7

Jegadeesh, N. (1990): Evidence of Predictable Behavior of Security Returns. The Journal of Finance, 45(3): 881–898. https://doi.org/10.2307/2328797

Jegadeesh, N. – Titman, S. (1993): Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. The Journal of Finance, 48(1): 65–91. https://doi.org/10.1111/j.1540-6261.1993.tb04702.x

Joó, I. – Ormos, M. (2011): Diszpozíciós hatás a magyar tőkepiacon (Disposition effect in the Hungarian capital market). Közgazdasági Szemle (Economic Review), 58(Sept): 743–758.

Komáromi, Gy. (2002): A hatékony piacok elméletének elméleti és gyakorlati relevanciája (The theoretical and practical relevance of the theory of efficient markets). Közgazdasági Szemle (Economic Review), 49(5): 377–395.

Kresta, A. – Franek, J. (2015): Analysis of Moving Average Rules Applicability in Czech Stock Market. Procedia Economics and Finance, 30: 364–371. https://doi.org/10.1016/S2212-5671(15)01303-9

Lakatos, M. (2016): A befektetői túlreagálás empirikus vizsgálata a Budapesti értéktőzsdén (An empirical test for investor over-reaction on the Budapest stock exchange). Közgazdasági Szemle (Economic Review), 63(7–8): 762–786. https://doi.org/10.18414/KSZ.2016.7-8.762

Li, Y. – Luo, Y. – Xiao, Z. (2023): Moving Average as a Psychological Barrier: Evidence from International Markets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4486459

Malkiel, B.G. (2003): The Efficient Market Hypothesis and Its Critics. Journal of Economic Perspectives, 17(1): 59–82. https://doi.org/10.1257/089533003321164958

Marek, P. – Šedivá, B. (2017): Optimization and Testing of RSI. Conference Paper, 11th International Scientific Conference on Financial Management of Firms and Financial Institutions. 11th International Scientific Conference. Proceedings (Part II.), VŠB – Technical University of Ostrava, pp. 530–537. https://www.ekf.vsb.cz/share/static/ekf/www.ekf.vsb.cz/export/sites/ekf/frpfi/.content/galerie-souboru/2017/proceedings/Part_II_final.pdf

Markowitz, H. (1952): Portfolio Selection. The Journal of Finance, 7(1): 77–91. https://doi.org/10.2307/2975974

Marshall, B.R. – Cahan, R.H. – Cahan, J. (2010): Technical Analysis Around the World. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1181367

Marshall, B.R. – Sun, Q. – Young, M.R. (2009): Is Technical Analysis Profitable on U.S. Stocks With Certain Size, Liquidity or Industry Characteristics? Applied Financial Economics, 19(15): 1213–1221. https://doi.org/10.1080/09603100802446591

Mérő, B. – Nagy, O. – Neszveda, G. (2019): Új faktorok tesztelése az empirikus eszközárazásban (Testing new factors in empirical asset pricing). Szigma, 50(4): 263–281. https://journals.lib.pte.hu/index.php/szigma/article/view/3197

Molnár, M.A. (2006): A Budapesti Értéktőzsde hatékonysága (The efficiency of the Budapest Stock Exchange). Hitelintézeti Szemle, 5(5–6): 28–35. https://www.bankszovetseg.hu/Content/Hitelintezeti/2cikk.pdf

McQuarrie, E.F. (2021): Stock Market Charts You Never Saw. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3050736

Mills, T.C. (1997): Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT 30. International Journal of Finance Economics, 2(4): 319–331. https://doi.org/10.1002/(SICI)1099-1158(199710)2:4<319::AID-JFE53>3.0.CO;2-6

Nagy, B. – Ulbert, J. (2007): Tőkepiaci anomáliák (Stock market anomalies). Statisztikai Szemle (Statistical Review), 85(12): 1014–1032.

Neely, C.J. – Rapach, D. – Tu, J. – Zhou, G. (2011): Forecasting the Equity Risk Premium: The Role of Technical Indicators. Management Science, 60(7): 1772–1791. https://doi.org/10.2139/ssrn.1787554

Neszveda, G. – Simon, P. (2022): Szezonalitás, január-hatás és a momentum-stratégia (Seasonality, January-effect, and momentum in stock returns). Szigma, 52(4): 335–352.

Neszveda, G. – Vágó, Á. (2021): A likviditásnyújtás kereskedési stratégiájának hozamvizsgálata a magyar részvénypiacon (Examining trade-strategy results of liquidity provision on the Hungarian stock market). Közgazdasági Szemle (Economic Review), 68(7–8): 794–814. https://doi.org/10.18414/KSZ.2021.7-8.794

Rádóczy, K. – Tóth-Pajor, Á. (2021): Investors’ Reactions to Extreme Events in the Hungarian Stock Market. Financial and Economic Review, 20(3): 5–30. https://doi.org/10.33893/FER.20.3.530

Welch, I. – Goyal, A. (2008): A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. The Review of Financial Studies, 21(4): 1455–1508. https://doi.org/10.1093/rfs/hhm014

Williams, O.D. (2006): Empirical Optimization of Bollinger Bands for Profitability. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2321140